In alcuni quesiti le sequenze numeriche sono comprese in figure geometriche, sia singole che in serie. È meno semplice determinare il criterio che regola la sequenza, soprattutto perché le possibilità sono in numero superiore e spesso solo individuando il punto iniziale di ogni figura si riesce a decifrare la sequenza. Poiché sarebbe inutile e troppo lungo illustrare tutti i criteri ammissibili lasciamo che alcuni esempi chiariscano la filosofia di questi quesiti.

Quale dei seguenti numeri completa la (Fig. 05.05.01.01)?

A)6 B) 7 C) 8 D)9 E) 10

Come illustrato nella (Fig. 05.05.01.01), la regola è relativamente semplice: la differenza tra ogni coppia di elementi opposti è 7, quindi la risposta corretta è la E.

Quale dei seguenti numeri completa la (Fig. 05.05.01.02)?

A) 316 B) 428 C) 222 D) 576 E) 109

Come illustrato nella (Fig. 05.05.01.02), la regola è più complessa: a partire dal 2 ogni volta il numero viene moltiplicato per 3 ma ad ogni passaggio si sottrae un intero che aumenta di un’unità. Si ricava che la risposta corretta è la B.

Quale dei seguenti numeri completa la (Fig. 05.05.01.03)?

A) 13 B) 11 C) 22 D) 12 E) 31

Come illustrato nella (Fig. 05.05.01.03), la regola è abbastanza facile: in ogni triangolo la somma delle basi fornisce il numero del vertice in alto. Si ricava che la risposta corretta è la A.

Quale dei seguenti numeri completa la (Fig. 05.05.01.04)?

A)3 B) 2 C)1 D)4 E) 5

Come illustrato nella (Fig. 05.05.01.04), la regola è complessa: in ogni triangolo la somma del vertice sinistro e di quello in alto moltiplicata per il numero al centro fornisce il numero del vertice destro. Si ricava che la risposta corretta è la C.